BRervst scantanses,
[P Mokt 1

£

NORTHWEST COMPUTER ALGORITHMS

TABLE of CONFIGURATIONS SUPPORTED

E=ES=SSS=SS= =SS S S S S=S =SS SSES S SSS=SS=SS =SS SSSS oSS SSS=S=SSS======S==S=======

CPU OPERATING HARDWARE
FAMILY SYSTEM MODELS
- o ————— o ————— o o e e - — ——— - - - -
8086 PC-DOS IBM-PC and Compatibles
MS-DOS
______ e o o i o s i e e e s o o i o o e T i o S S e o o e i i o o e o S
ACTRIX MATRIX NEC PC-8001A
ALTOS S-100 (sys. in gen.)
COMPUPRO S-100 (w disk ctrls
DEC Rainbow (w Z80) CCP 2422
EPSON QX-10 MORROW 2J2D)
Z280 CP/M GAUD BAUD SUPERBRAIN
GMR (Mil. Spec.) TRS-80 Model 2,3,4,4P
HP 125 XEROX 820 Model 1,2
INTERSYSTEMS XOR-100
KAYPRO 2,4,10
LOBO MAX80
MORROW MD2,3
________ G o o o o e o - e e e - ——— - -
Z80 TRSDOS TRS-80 Model 1,2
TRSDOS CLONES
________ G e = — —————————— ———————— T — — — — —— T — - - - - — — - -

Current as of 1 June 1985.

TABLE of CONFIGURATIONS NOT-SUPPORTED

CPU OPERATING HARDWARE

FAMILY SYSTEM MODELS
________ o ——] = — — ———— — ——— — — T —— —— - ——— - - - - -
8086 PC-DOS No problems found
MS-DOS
-------- o ————— —— — ————— — — - — —— — T — —— —— - ——— o ———— - ————
APPLE 2's under test
COMMODORE 64 not supported
Z80 CP/M H89's suspended support
OSBORNE's suspended support
________ o e . - —— — — — ——— — —— ——— — ——— ——— —— — — T — —— — - - — = — - -
z80 TRSDOS TRS-80 Model 4,4P TRSDOS 6.? not supported
TRSDOS CLONES
________ o e o e e o —— - —— - - — - - - -

Current as of 1 June 1985.

P.O. Box 90995 . Long Beach, California 90809 « (213) 426-1893

| TRADEMARKS |

The Following Trademarks may be used in this documentation: TRS-
80 is a trademark of TANDY CORP., TRSDOS is a trademark of TANDY
CORP, CP/M is a trademark of DIGITAL RESEARCH Inc.

| DISCLAIMER OF WARRANTY |

THIS SOFTWARE, MANUAL AND ALL OTHER FORMS OF DOCUMENTATION ARE
SOLD "AS IS"™ AND WITHOUT WARRANTIES AS TO THE PERFORMANCE OR
MERCHANTABILITY. THE SELLER'S SALESPERSONS MAY HAVE MADE
STATEMENTS ABOUT THIS SOFTWARE. ANY SUCH STATEMENTS DO NOT
CONSTITUTE WARRANTIES AND SHALL NOT BE RELIED ON BY THE BUYER IN
DECIDING WHETHER TO PURCHASE THIS PROGRAM.

THIS SOFTWARE IS SOLD WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES
WHATSOEVER. BECAUSE OF THE DIVERSITY OF CONDITIONS AND HARDWARE
UNDER WHICH THIS SOFTWARE MAY BE USED, NO WARRANTY OF FITNESS FOR
A PARTICULAR PURPOSE IS OFFERED. THE USER IS ADVISED TQ TEST THE
SOFTWARE THOROUGHLY BEFORE RELYING ON IT. THE USER MUST ASSUME
THE ENTIRE RISK OF USING THE SOFTWARE. ANY LIABILITY OF SELLER OR
MANUFACTURER WILL BE LIMITED EXCLUSIVELY TO PRODUCT REPLACEMENT
OR REFUND OF THE PURCHASE PRICE.

[COPYRIGHTS |

UO-LISP SOFTWARE: (C) Copyright 1982 Dr. Jed Marti All Rights
Reserved.

UO-LISP DOCUMENTATION: (C) Copyright 1982 Dr. Jed Marti All
Rights Reserved.

| LICENSE AGREEMENT |

Purchasing this issue of the UO-LISP Programming Environment
licenses you to run as a single user on a single machine. You are
entitled to run the UO-LISP Programming Environment on one
machine at a time. To run the UO-LISP Programming Environment on
multiple machines a multi machine license must be obtained from
the distributor.

| UPDATE POLICY |

Due to the inherent nature of LISP as an evolving programming
environment there needs to be a discussion on providing updates
to the UO-LISP Programming Environment. As stated in the
DISCLAIMER OF WARRANTY UO-LISP is not offered as a bugless
environment. There is a good chance that in the software and
documentation there are errors, omissions, bugs, and other such
problems. At this particular issue of the UO-LISP Programming
Environment there are no well defined and scheduled update
policies by Northwest Computer Algorithms. We are, however,
thinking about cost effective ways to provide inexpensive
updates. Any announcements might be made in the Newsletter, the
Catalog, or our Advertisements.

Northwest Computer Algorithms
P.0O. Box 90995
Long Beach, Ca. 90809
(213)-426-1893

Dear User,

Welcome to the growing community of LISP users and thank you for
purchasing the UO-LISP Programming Environment.

The UO-LISP Programming Environment running under TRSDOS or one
of the TRSDOS like operating systems is a substantial subset of
the various LISP systems available on larger computers. UO-LISP
brings to bear the inherent programming power and flexibility of
LISP to micro-computing environments. Man-years of effort have
gone into the design strategies, the developmental prototypes and
the commercial implementations so that the personal computer
market place may have access to the power of LISP in a
reasonable implementation.

It is hoped by Northwest Computer Algorithms, the distributor,
that you, the owner of this issue of UO-LISP, take the necessary
precautions to protect this copyrighted software from the
unauthorized use by "software pirates," "private collectors,”
"computer club traders," and other such "free market place
abusers." In protecting this software you do two things, 1) you
protect your self from violating the author's copyrights and your
license agreement with the distributor, 2) you provide the
incentive for the author and distributor to continue the
evolution and development of the UO-LISP Programming Environment.
PLEASE take the time to read the sections on DISCLAIMER OF
WARRANTY, LICENSE AGREEMENT, COPYRIGHTS, AND UPDATE POLICIES.

This issue of UO-LISP was created during the transition period of
UO-LISP distribution rights from Far West Systems and Software,
Inc., to Northwest Computer Algorithms. As a results this set of
documents may seem a bit unpolished. The software, however, is
very polished, and relatively sound. If during the Installation
Procedure you have any problems please write or call,

NORTHWEST COMPUTER ALGORITHMS
P.0O. Box 90995
Long Beach, Ca. 90809

(213) 426-1893

Regards,

William Giarla

INSTALLATION GUIDE
for
UO-LISP Version 1.5b
on

Z80 Based CPU, TRS-80 Model's I and III
with TRSDOS or TRSDOS like Operating Systems

Distributed by
Northwest Computer Algorithms
P. O. Box 90995
Long Beach, CA 90809
(213) 426-1893

QUICK CHECK INSTALLATION PROCEDURE

If you are unable to read any of the files on these disks, please
return them to Northwest Computer Algorithms and we will gladly
supply you with new ones. If you have any problems with the
system, please let us know as soon as possible. Your comments
about the system will be greatly appreciated.

Installing UOLISP (It is assumed that you are familiar with the
operation of TRSDOS and the use of the COPY and BACKUP commands.)
Please note that the programming environment is called UO-LISP
while the actual name of the command file is LISP48/CMD.

1. Please make a backup copy of the diskettes as soon as
possible. The MASTER PASSWORD is UOLISP. The disks are shipped in
Model I format and if you are running a Model III you will want
to convert the disk to Model III format. Please consult your
manuals for the correct procedure to convert the formats.

2. We suggest that you start by creating a LISP system disk with
the following files on it:

LISP48/CMD, COMP, RLISP, DEMO/RED

This collection of routines will enable you to run the demos
mentioned below. As you become more experienced with the system
you will want to include more of the packages in your LISP
environment. Also if you can before you run the demos listed
below print out the DEMO/RED file to look at

during the demo of RLISP.

3. To verify that you have a working copy of the system, mount
the disk you created in step 2 above in one of the drives and
enter the following. Assume that the disk was mounted in drive A.

DOS READY

LISP48
UOLISP V1.5B <date created>

%*

The time between entering LISP48 and when the asterisk (*) prompt
appears should be less than 10 seconds. If some message other
than the * prompt appears, something is wrong. You should write
down any output that appears on your console and return this and
the disk to Northwest Computer Algorithms or call immediately.

Enter the following program. You can exit to the TRSDOS command
level by typing (QUIT) at the beginning of any input line.

(DE SUPERREVERSE (A)
(COND ((ATOM A) A)
(T (CONS (SUPERREVERSE (CDR A))
(SUPERREVERSE (CAR A))))))

Make sure you get the number of parentheses correct. UQOLISP
should respond after you type a <RETURN> on the last like almost
immediately with:

SUPERREVERSE
and another prompt. If not, you are probably missing a
parentheses somewhere. If you have gotten this far, then type the
following:

(SUPERREVERSE '((A . B) . (C . D)))
UOLISP will respond very quickly with:

((D . C) B.A)
Now run the demo program written in RLISP in file DEMO/RED. If
you did not create a print out of the £file DEMO/RED use <shift-@>
to control the scrolling of the demo.
Enter:

(FLOAD "COMP ")
UO-LISP will load the compiler and respond with:

NIL
Turn on the compilation flag by entering:

(SETQ !*COMP T)
UO-LISP will respond with:

T
Now load the RLISP language by entering:

(FLOAD "RLISP ")
UO-LISP will respond with:

NIL
To start RLISP enter:

(BEGIN)
UO-LISP will respond with:

RLISP. V1.5, <dated created>

You are now in RLISP and the syntax will be different than LISP.
Now enter:

IN "QEMO/RED =3
RLISP will respond by reading and executing the DEMO/RED demo
file. If you made it this far without typing errors the demo
should run to completion. If you did not create a print out of
the DEMO/RED file use <shift-@> to control the demo scrolling.

demo rUNSee. ocee ooe
‘Now to go back to LISP enter:

LISP;
UO-LISP will respond with:

"Entering Lisp"
Now to exit LISP enter:

(QUIT)
Control is now returned to the TRSDOS command control program.
4. UOLISP is in an operational state. Please spend time going
over the longer Installation Procedure that follows since it
contains valuable information not contained in the manual. Also
please spend time getting to.know the placement of information in
the Manual. There is a reasonable index. If you have any

guestions or comments about the manual please feel free to
contact us at any time.

BUGS & FEATURES

When entering in a file name it is best to leave a space after
the name inside the quotes, example "foo ", otherwise you will
probably get disk error reports from TRSDOS. When entering
characters A to Z do not use the shift key. 1If you do use the
shift key some defined LISP functions may not be recognized by
the reader. If you create a function where a shifted character is
part of the name you may not remember having used the shift key
and UO-LISP will generate an undefined function error. There is a
miss spelling in the manual in the edit section. The function to
restore a file created by the editor is listed as "RSTR" in the
manual this should read "RESTRE".

Concerning the included NEWSLETTER, although most of the information
concerns the CP/M based systems from time to time there will be
TRSDOS news as well. Please be alert to the differences between
the news items.

IMPORTANT NOTES

NON-TRSDOS OPERATING SYSTEMS

So far the NON-TRSDOS systems that are TRSDOS like in nature,
available for the TRS-80 Model I & III HAVE SHOWN TO BE
COMPATIBLE WITH UO-LISP. If you are running a NON-TRSDOS
operating system and experience problems please call or write
immediately.

USE OF HIGH MEMORY FOR DEVICE DRIVERS

Those of you running the UO-LISP Programming Environment with
a version of TRSDOS or other operating systems like LDOS and
DOS+3.5 which allow device drivers to be placed in high memory
PLEASE TAKE NOTE.

This version of the UO-LISP Programming Environment was designed
before high memory located device drivers were commonly utilized.
The UO-LISP compiler currently expects to have access to all of
available high memory. THUS, if not monitored the compiler might
try to use the space occupied by some device driver. To prevent
this from happening there is a function not documented in the
manual which will indicate where the binary program space
allocator is pointing. Use this function to monitor your binary
space pointer and avoid letting the compiler allocate space used
by a device driver. Also note that "FLOADing" a file uses binary
program space too.

The function not documented is (BPS!$), it returns the next
available byte of binary program space available for allocation.
Allocation occurs low to high memory.

IMPORTANT NOTE
IMPORTANT NOTE
IMPORTANT NOTE
IMPORTANT NOTE

The tutorial guide included in this package was written for the
CP/M based UO-LISP V2. You will find that it refers to a manual
you did not receive. It will also refer to functions not included
in your system.

The CP/M based version of the tutorial guide is now included with
the TRSDOS based version of UO-LISP V1. WHY INCLUDE IT? We have
found that a high percentage of those purchasing UO-LISP V1 have
little or no LISP exverience. You will find that about 90% of the
tutorial guide is useful in learning LISP. We hope to retrofit
the tutorial guide to TRSDOS some time in the future.

BUG REPORT

System

Version Number/Date

Name

Address

Zip

Phone and hours: () - - /

Description Please provide a brief description of what you think the
problem is and what its symptoms are. Please provide a complete program
and data listing if possible so that we can duplicate the problem.

P.0. Box 90995 Long Beach, California 90809 (213)-426-1893

I. Overview

The UOLISP system requires a nminimum of 32k to operate and
a single floppy disk. A two disk system is required to copy the
software from the distribution disk to a disk with the operating
system. UOLISP is configured for operation with the TRE-88 DOS
2.3 system on either the Model I or the MNodel III.

This manual and the users manual are not intended as
introductions LISP programming. Users interested in 1learning
LISP programning are advised to consult one of the books listed
in the bibliography.

II. Installation of the System.

The floppy disk contains executable code for all the
packages described in the UOLISP manual. The disk should be
copied to another using the operating system BACKUP utility.
The disk you have received contains none of the TRS-80 operating
system except a directory. The files can be copied to a disk
with the operating system COPY command. Alternatively the disk
can be used as a Gata disk in a second drive.

III. Starting up LISP

After mounting the floppy in the default disk drive you
execute the program LISP by just typing LISP32 or LISP48 for
either the 32k or 48k versions. The system should respond
with:

UOLISP. V1.x. date
*

within a few seconds. If not, the disk was not properly copied.

The Vl.x 1is the version of the system you are running. All
correspondence should mention this number. The prompt character
is always an asterisk.

IV. TRS-80 File Names

In the users guide file names are given in a system
independent form. In practice these file names must conform to
the TRS-80 file name conventions [2].

File names within UOLISP are always strings in double

cuotation marks. JImportant: the last character of the file name
should always be a blank.

Some conventions for file name extensions are:

/LSP - A LISP syntax source file.

/RED - An RLISP syntax source file.

no e

xtension - Fast load files.

The following are file name equivalents for the files given
in the users guide.

Guide IRS-8C
"COmP" "COMP " Compiler.
"RLISP" "RLISP " RLISP parser.
"EDIT" "EDIT " Structure Editor.
"TRACE" "TRACE " Trace package.
"META" "META " Little META TWS.
"LAPP" "LAPP " LAP pretty printer.
"oPT" "OPT " Optimizer for compiler.
"VECTORS" "VECTCRS " Vector package for RLISP.
"PRETTY" "PRETTY " Pretty printer.
V. Diskette Contents

The following files are present on the distribution
Giskette:

1.

2.
3.
4.
5.

6.

9.

18.

LISp32/Cl'D - A 32k version of UOLISP. Does not permit
operation of all the packages. Does not have as many free
cells or as large a symbol table. Not distributed with

V1.5.

LISP48/ClD - The full sized 48k version.

COMP - A fast load version of the compiler.
RLISP - A fast load version of the RLISP parser.

EDIT - A fast load version of the structure editor.

TRACE - A fast load version of the trace package.
DEMO/RED - A demonstration program in RLISP.

LAPP - A pretty printer for the LAP assembler. Formats
output and dumps code and addresses in hexadecimal.

OPT -~ A peephole optimizer for the compiler and assembler.
Can be loaded with the compiler to produce smaller and
faster code.

VECTORS =~ A vector package for use with RLISP. Implements
arrays of any type.

11. PRETTY - A pretty printer. It is interfaced to RLISP and
the EDITOR or may be loaded alone.

VI. Storage Requirements

The following are the approximate free spaces available in
the 32k and 48k systems:

Contents 32k 48k
String Space (characters) 15¢0 3072
Free cells (pairs) 1325 2560
Symbol table (entries) 320 512
Code pointers (entries) 128 172
Stack space (entries) 4000 4096
Einary Program Space (bytes) 5158 13359

The following fast load files may be loaded at any address in
binary program space. They take up the following amount of
space:

RLISP 5143
Compiler 4737
Trace package 814
Editor 1798
LAP pretty printer 567
Optimizer 2695
Vector package 965
PRETTY printer 1244

Lisp Interpreter code size: approximately 7000.

These sizes do not include dotted-pairs and symbol table
space required for their execution. The base LISP interpeter

including all data but less any free area requires about 13k
bytes.

VII. Control Keys

All input and output from the TRS-80 keyboard is in capital
letters. A few keys have special functions. The CLEAR Kkey will
interrupt any running program and cause an ERROR(€,NIL). During
all output operations, any key which is typed (other than CLEAR)
will cause temporary suspension of the program until another
key is typed at which time execution will continue. Note that
CLEAR is only effective during output operaions.

The standard editing controls of the TRS-80 for backspace
and line clear are implemented. The BREAK key has no effect.

VIII. TRS-80 Graphics

Three new functions have been added to permit low resolution
graphics on the TRS-80 screen. Special thanks go to Bruce
Douglass for these functions.

(RESETE X:integer Y:integer) :NIL
Type: EVAL, SPREAD.
Turns off the pixel at locdtion (X Y) on the TRS-80 screen.
X should be in the range O to 127 inclusive and Y the range
0 - 47 inclusive. Other values may destroy the system.

(SETB X:integer Y:integer) :MIL
Type: EVAL, SPREAD.
Turns on the pixel at location (X Y) on the TRS-80 screen.
The X and Y values should be constrained as in RESETB.

(TESTE X:integer Y:integer) :boolean
Type: EVAL, SPREAD.
If the pixel at 1location (X Y) 1is on, T is returned,
otherwise MIL is returned. The X and Y wvalues should be
constrained as in RESETB.

The TRS-80 screen 1is referenced by the following X and Y
coordinates:

IX. Program Descriptions.

A. Lisp Interpreter.

The LISP interpreter is the main program of the entire
system. It functions much 1like a BASIC interpreter, reading
function definitions, evaluating functions, handling errors and
so on. The features provided by this program include:

l. A garbage c¢collector - Most LISP data structures are
constructed from dotted-pairs which are kept in a free
list., When all these are used up by a program, the garbage
collector locates all those not in use and returns them to
the free 1list. Garbage <collection in the 48k system
generally takes about two seconds.

2. Disk 1/Q - UOLISP supports input from an auxiliary disk
file whose name is supplied by the user. It also supports
(even at the same time) output to a disk file whose name is
supplied by the user. The current version of UOLISP does
not support output to the line printer.

3. Functions - UOLISP supports both EXPR and FEXPR type
functons. The EXPR type function is the wusual form of
function which has all its arguments evaluated before it is
called. The FEXPR type function does not evaluate its
arguments unless programmed to do so. In this manner, the
user can experiment with control constructs other than
those provided by the base system.

4. Hashed Symbol Table - The run time symbol table of UOLISP
exists in 32 buckets each associated with a particular set
of symbols determined by a hash function. This assures very
fast input of LISP files from disk.

5. Arithmetic - UOLISP uses 13 bit signed arithmetic
permitting numbers between =-4096 and +4095.

6. Strings - Arbitrary strings of characters for error

messages and the like are implemented.

7. Function Set =~ Nearly all Standard LISP functions are
implemented. The only exceptions are those dealing with
floating point numbers, vectors, COMPRESS and EXPLODE, and
some of the I/O functions. 1In all, 1062 of Standard LISP's
123 functions are implemented. There are 20 additional
functions not in Standard LISP also available to the user.

8. MAP functions - All 6 !AP functions are supported.

9. Fast Loader - A loader of relocatable "fast load"” files is
part of the resident system.

10. TIRS-80 graphics - Three functions turn on, turn off, and
test individual pixels on the 128 by 48 TRS-80 low
resolution graphics screen.

B. Fast Load

It is expected that most functions will be compiled even
during the debugging phase of a program. User implemented
programs can be compiled as a block into a relocatable form
called "fast load". Storing files in this form saves space and
time. As many fast load files as will fit into available space
can be loaded in any order. All support programs of the system
are saved in this way, including the compiler, RLISP, the trace
package and the editor.

This form of file loads considerably faster than reading the
source and compiling it. Likewise, programs which are too big to
fit into storage may be compiled into the fast 1load format and
then loaded into storage where the compiler would normally be
stored.

C. The LISP Compiler.

The LISP compiler converts LISP functions into code directly
executable by the 2Z-80 microprocessor inside the TRS-88. The
compiler can either generate a fast 1load file, or dump the
instructions directly into main storage for execution, Compiled
code uses about 1/2 the space of interpreted code and runs up to
5 or more times faster. It generally requires less space to
run.

Compiled and interpreted code can be mixed. Some functions
of a program can be interpreted and others compiled without
consideration by the user. A special "fast 1link" permits
function calls to be placed directly inline, a "slow link"
scheme permits functions to be redefined, and traced even if
they are compiled. The operation of the compiler is given in
great detail in the users guide.

D. The LAP pretty printer.

This module formats the output of the LAP assembler for easy
examination. Addresses and instructions are printed in their
hexadecimal forms rather than decimal. The LAP instructions and
labels are printed in a fixed format without parentheses.

E. The Optimizer.

This module takes the LAP code created by the compiler and
performs 13 different optimizations on it. This include:
removing redundant load register instructions, dead code,
converting 1long to short jumps, using some special Z80
instructions, and removing extra stack frame allocations. The
optimizer can also be enabled to open code some functions
producing even faster code, sometimes as much as 30 % (with some
increase in code size). A final class of optimizations removes

some of the run time type checking and prcduces even faster
code.

E. S-expression Pretty Printer.

This package formats LISP S-expressions by indenting them in
a reasonable form. The expressions will not run over the screen
boundaries as set by LINELENGTH. The pretty printer is
interfaced to RLISP and the structure editor. It can be loaded
directly into LISP and used by explicitly calling the
PRETTYPRINT function.

G. The LISP Structure Editor.

A very simple LISP program permits the user to enter
functions, execute them, and then save them in a disk file. The
functions can be modified and 1listed. The disk file can be
listed using regular system utilities, read by BASIC programs,
and even edited by some of the more advanced editors (not
EDTASM). The editor can be used in conjunction with PRETTYPRINT
for more legible files.

H. The RLISP High Level Language.

The RLISP programming language was implemented by A. C.
Hearn in 1973 to facilitate the implementation of a symbolic
algebra system, REDUCE [3-4]. A reasonably complete subset of
the syntax has been implemented for UOLISP. For example, in LISP
a recursive factorial routine might be programmed like this:

(DE FACT (N)
(COND ((LESSP N 2) 1)
(T (TIMES N (FACT (DIFFERENCE M 1))))))

The same procedure written in RLISP looks more pleasing to the

experienced user of modern block structured programming
languages:

EXPR PROCEDURE FACT 11;
IF N < 2 THEN 1
ELSE N * FACT(N - 1);

The RLISP parser is cleanly interfaced with the system and can
be loaded from disk when required. The parser takes a 1little
more than 4k bytes of storage. In the 48k system it may be
loaded with the LISP compiler with about 5k bytes left over for

compiled programs. The 32k system will not support both RLISP
and the compiler together.

I. The Trace Package.

This set of functions permits users to watch the evaluation
of - both interpreted and compiled functions. The arguments of a
function are printed out before the routine is entered, and the
value of the function is displayed before it is exited. A BREAK
function permits the user to stop a function and examine its
local and global state.

J. The Vector Package.

This collection of routines implements the Standard LISP
vector functions. Vectors (arrays) can be created at any time
and can be of arbitrary size. The elements of a vector can be
of any type and can even be of mixed types. Consequently a 2
dimensional array 1is implemented as a vector of vectors.
Vectors can even be input to a program. For example:

eo, 1, eo, 1#, 3, "HELLO"#

creates a 5 element vector with the values 0, 1, GC¢, 1%, 3, and
"HELLO" in its 5 locations.

X. Running the Demonstration Program.

The demonstration program can be run in either an
interpreted mode, or can be compiled and run (it cannot easily
be converted to a fast load file) on 48k machines. Enter the
following:

LISP48 <enter>

(FLOAD "RLISP ") (BEGIN) <enter>
ON COMP; <enter>

IM "DE!IO/RED "; <enter>

The demonstration program will being to run. To freeze the
output on the screen, type any character (other than CLEAR). To
resume output, type any other key. Use of the compiler is

recommended because of of the length of the demonstration.

List of References

l. J. Marti, A. C. Hearn, M. L. Griss, C. Griss, "Standard
LISP Report", SIGPLANM lotices, Vol. 14, DNo. 10, October

1979, pp. 48-68.

2. "TRSDOS & DISK BASIC Reference lManual", Radio Shack,
florth, Texas, 1979.

3. A, C. Hearn, "REDUCE 2 Symbolic Mode Primer",

Computational Physics, Operating Note Mo. 5.1, October

1974.

4, A. C. Hearn, "REDUCE 2 User's Manual", Utah Computational

.Physics, UCP-19, March 1973.

Bibli ;

l. Winston, P. W., Horn, B. K. P.,, "LISP", Addison-liesley

Publishing Company, Reading, Massachusetts, 198l.

2. Allen, J., "Anatomy of LISP", McGraw-Hill, MNew York,

1978.

3. IiicCarthy, J., Abrahams, P. ., BEdwards, D. J., Hart, T.

P., Levin, M. I., "LISP 1.5 Programmer's Manual", The
Press, Cambridge, lassachusetts, 1962.

4, Siklossy, L., "Let's Talk LISP", ?rentice-Hall, Englewood

Cliffs, Mew Jersey, 1976.

5. Weissman, C., "LISP 1.5 Primer", Dickenson Publishing

Company, Belmont, California, 1967.

UO-LISP MANUAL Version 1.5b
on

Z80 Base CPU, TRS-80 Model's I and III
with TRSDOS or TRSDOS like Operating Systems

by
Dr. Jed Marti

Distributed by
NORTHWEST COMPUTER ALGORITHMS

JULY 1984

ABSTRACT

This manual describes the Z80 based LISP system, UO-LISP, its
data structures, built in functions, operating procedures, the
complier and optimizer, an RLISP parser, a trace package, and a
structure editor.

CONTENTS

Contents and IntroductionN.....ccecceececececcecasl
Data TYyPeScecceceeeaccccscsccocoscscsosssncsscssal
FunctionS...cceeececececcccccccsas cresccscsceeesl
Compiler, Optimizer and Fast Load....cceeees.3,4
EQitOreceeeeeceeeceeeaasacacccseacossoccccnnaasned
RLISP.tceeeeeaasesaososcscssosccacsscscsssscscosansssssh
Trace and Miscellaneous PackageS........ ceeeel,8

Index-............-.‘....-...-..-...-.‘...--..9

INTRODUCTION

UOLISP is a subset of Standard LISP [l1] implemented for
the 280 microprocessor. It runs in a minimum of thirty two
thousand bytes of storage and most effectively with forty eight
thousand or more. The system consists of the following:

1. An interpreter

2. A program to load precompiled object files ("fast
load" files)

3. A compiler for generating either fast load files or
directly executable code

4. An optimizing phase for the compiler

5. A parser for a subset of RLISP [2]

6. A function trace feature

7. A LISP structure editor and pretty printer

8. Numerous support packages

This manual is not intended as an introduction to LISP.
Readers interested in learning LISP are advised to consult one
of the tutorials on the subject [3-6]. Some of the function
names may be different from those used in the books but the
correct name can usually be found by examining section titles
of this manual. Users of Standard LISP [1) will find lists of
differences in each section as well as with individuai
functions,

CHAPTER 1

DATA TYPES

1.1 1ITEMS

An item is a 16 bit quantity. The last 12 or 13 bits
constitute the data portion of the value and the first 3 or 4
bits, its tag, indicating type and current accessability from
the base system.

Bit Use

) Used by garbage collector to indicate
item is in use,

1-2 Data type:
P9 - Dotted-pairs.
81 - Identifiers.
18 - Integers.
11 - Strings and function p01nters.

3 Subtype bit for strings and function
pointers.
119 - Function p01nter.
111 - String.

1.2 DOTTED-PAIRS

Up to 8192 dotted-pairs (32k bytes) may be referenced by the
UOLISP system depending on the amount of available storage. A
minimum of 30@ pairs are required for the base system to
operate. To address a full 8k pairs requires that the data
portion of a dotted-pair pointer be an index into the "vector"
of dotted-pairs. Dotted-pairs are two contiguous items, four
bytes arranged in ascending storage order:

DATA TYPES

+ + ——tmm————— tom————— +
| CAR | CDR |
| byte 1 | byte 2 | byte 3 | byte 4 |
+=- + —————t— - +- +

To compute the real address of a dotted-pair from its item
pointer, the value portion of the item is shifted left two bits
and the resulting value is added to the base address of the
pair space.

Dotted-pairs are entered and printed in the same form as
Standard LISP. The 1list representation of dotted-pairs is
permitted as well as the use of ' to represent the QUOTE
function.

List notation eliminates extra parentheses and dots. The
list (a . (b . (c . NIL))) in list notation is (a b c). List
notation and dot notation may be mixed as in (a b . ¢) or
(a (b . c) d) which are (a. (b.c)) and
(a. ((b.c) . (d.NIL))). In BNF lists are recognized by
the grammar:

<left-part> ::= (| <left-part> <any>
<list> ::= <left-part>) |
<left-part> . <any>)

Note: () is an alternate representation of NIL.

1.3 IDENTIFIERS

Identifiers are the same as those defined in Standard LISP
except that all identifiers are interned and may not be removed
from the object list (the symbol table in this case). The
system may reference up to eight thousand identifiers, though
there are usually only 568 or so free ones.

Identifiers can have from 1 to 255 character print names.
The first character must be alphabetic or any other character
preceeded by the | escape character. Successive characters
may be alphanumeric or other characters prefixed by the escape
character. If the value of the !*RAISE flag is NIL, lower case
characters are not converted to upper case. On machines with
no lower case, there is no !*RAISE flag.

Each identifier is two items in the symbol table. The
first is a pointer to the string, called the print name by
which the identifier is known to the outside world. The second
is a pointer to a structure of values associated with the

identifier called the property list. The symbol table is a
vector of these pairs.

DATA TYPES

The property list is implemented as a list structure with
the following attributes:

1. An atom is a flag (see the FLAG, FLAGP, and REMFLAG
functions)

2. A dotted-pair is an indicator-value pair (see the GET,
PUT, and REMPROP functions). There are three special
pairs for global values and functions, these being (GLOBAL
. xxx), (EXPR . xxx), and (FEXPR . xxx)

Thus the function REVERSE, a compiled EXPR has as its
symbol table entry (note that $6063 is a hexadecimal quantity
described later):

+—+
+—+
+ —+

"REVERSE" (print name) ((EXPR . $60803))

1.4 INTEGERS

Integers are stored as 13 bit two's complement values. They
conform to the Standard LISP conventions for fixed numbers in
the range -4096 to +4@95. Both positive and negative integers
are recognized by the LISP reader.

1.5 STRINGS

Strings are arbitrary character sequences from @8 to 255
characters in length. Strings serve as print names for
identifiers or as constants. A string pointer is a 12 bit
offset into the string space which is a single large character
vector. The minimal system requires a few more than 1200 bytes
of string space. Each string is a byte containing the number
of characters in the string followed by that number of
characters. Thus the string "REVERSE":

DATA TYPES

Strings are entered surrounded by "'s. Unlike Standard LISP,
"'s are not allowed within the string.

1.6 FUNCTION POINTERS

Since compiled functions may occur almost anywhere in storage
and thus their addresses 1look 1like an arbitrary item, real
addresses of functions are hidden in the real address table. A
compiled or primitive function is normally addressed indirectly
through this table.

tm———— +
[|
tm———- + $7DAC
| | tmm——- dStmmmm e
l | | | REVERSE
REVERSE function +----- + | | code
pointer I I [I
tm———— I .
$6003 ————- >|$7DAC|--———-- + .
tm——— + .

Function pointers may not be read in but are displayed as 4
hexadecimal digits preceded by a dollar sign. The number in
the table may not be accessed except internally.

DATA TYPES

1.7 STACKS

There are two internal stacks. One contains stack frames,
activation records for parameter bindings and for 1local
variables in compiled functions. The other contains a pushdown
stack for return addresses and intermediate values. The stack
frames are in ascending storage order and the pushdown stack
descends. When they <cross or are about to cross the system
stops.

The garbage collector examines both stacks for pointers to
structures. To assure that only valid items are contained in
the stacks means that:

1. All values less than 8192 ($2000) are pointers to
dotted-pairs.

2. All items greater than or equal to 8192 are atomic.
The first 8k of storage must not have routines which will
have return addresses on the stack when the garbage
collector might be called.

We have made this possible by putting dotted-pair space and
stacks in the low 8k of the system. Since functions are stored
above the 8k boundary, their return addresses 1look 1like
constants and are not examined by the garbage collector.

CHAPTER 2

FUNCTIONS

The functions that follow are presented in the format of the
Standard LISP Report [1]. Except for the 1low level and
compiler support functions the function descriptions closely
resemble those of the report.

Each function name appears with formal parameter names and
their expected types. These are any of the following:

alist - An association list. This is a list of dotted-pairs,
the CAR of which is an identifier and the CDR an
associated value of any type.

any - Any item or structure is permissible.

atom - Any item which is not a dotted-pair is an atom.

boolean - T (for true), or NIL (for false).

dlist - A list for the DEFLIST function consisting of a list
of two element lists the first element being an identifier

and the second a value to be added to its property list
(see DEFLIST).

dotted-pair - Any value returned by CONS.

- = NIL or any value. Any value other than NIL
stands for true.

ftype - Either of the identifiers EXPR or FEXPR, one of the
two function types implemented.

function - A lambda expression, or a function-pointer.

-poj - An indirect pointer to the starting
address of a function.

id - An identifier.

FUNCTIONS

integer - An integer value.

lambda-expression - A LISP S-expression of the form (LAMBDA
(oo.) -on)-

number - A numeric value (an integer).
string - A string of characters surrounded by double quotes.

word - A dangerous value used by the compiler during
generation of absolute addresses of code.

If the formal parameter may be of more than one type, the types
are listed surrounded by braces { ... }. If there can be an
indefinite number of formal parameters, the repeated parameter
is enclosed in square brackets [... 1.

The type of value that the function returns follows its
prototype. The method of evaluation of the function's
arguments appears on the second line of the definition. A
function either has its arguments evaluated before it is
invoked (an EVAL type function), or are bound to the formal
parameters without evaluation (a NOEVAL type function). The
actual parameters of a function are either spread amoung the
formal parameters (a SPREAD type function), or are collected
into a list and bound to the single formal parameter (a
NOSPREAD type function). EVAL, SPREAD type functions are
called EXPR's, and NOEVAL, NOSPREAD functions FEXPR's. There
are currently no EVAL, NOSPREAD or NOEVAL, SPREAD functions
implemented in UOLISP.

2.1 LOW LEVEL FUNCTIONS

The following functions are accessible by the user but are not
part of Standard LISP.

{!SPA X:integer)
Type: EVAL, SPREAD,

Using the last 8 bits of the integer X, print these bits
as an ASCII character.

{I1SGA) :integer
Type: EVAL, SPREAD.
Read the next character from the input file and return its
character value as an integer from # to 255.

FUNCTIONS

1 ¢id
Type: EVAL, SPREAD.
This function returns the character currently being
pointed to by the input scanner. It does not however scan
ahead another character as does READCH. This function 1is
used by the RLISP parser to form diphthongs.

JGETP!S X:id) :any
Type: EVAL, SPREAD.
Return the property list for the identifier X. No type
checking is performed.

(PUTP!S X:id PROP:any)
Type: EVAL,SPREAD.
Replace the property list of the identifier X with PROP.
No type checking is performed.

{CATCH X:any):any
Type: EVAL, SPREAD.
Evaluate the argument X (X is preevaluated because CATCH
is an EXPR) and return this value. If a THROW occurs
during this second evaluation, return the value of the
argument of THROW.

{THROW X:any)
Type: EVAL, SPREAD,
Cause a jump back to the most current CATCH restoring
stack pointers and the 1like to the environment of the
CATCH. The value returned by CATCH is the wvalue of the
actual parameter X. A THROW which is not in the scope of
a CATCH is caught by the Standard LISP reader.

INCONS X:any) :dotted-pair
Type: EVAL, SPREAD.
Returns (X . NIL).

{XCONS A:any B:any) :dotted-pair
Type: EVAL, SPREAD.
Returns the dotted-pair (B . A).

Type: EVAL, SPREAD.
Forces a garbage collection.

2-3

FUNCTIONS

ANTOK) :atom
Type: EVAL, SPREAD.
The NTOK function reads the next token from the input
stream and generally returns it. The token (if any) is
stored in the global variable TOK!* and its type (an
integer) in the variable TYPE!*.

IYPEL* TOK!* Meaning
2 nnn Integer
1l id Identifier
2 * (
3 * .
4 *)
5 string String
6 id Single character
converted to identifier
7 * Quote character (')

(* means "has no defined value")

{ORDERP A:any B:any):boolean
Type: EVAL, SPREAD.
A 16 bit comparison of the values of A and B are made.
This includes the tag fields. ORDERP returns T if A is
less than B in the range # to 65535. The function 1is
useful for determining the order of items within a space.

(IDL!* X:id):integer
Type: EVAL, SPREAD.
Returns the number of characters in the print name of X.
This does not include any !'s which might have to be
included on special characters.

{STLI* X;string):integer
Type: EVAL, SPREAD.
Returns the number of characters in a string less the two
enclosing "'s.

2.2 COMPILER SUPPORT FUNCTIONS

The following functions are used by the compiler ta create
absolute code or fast load files.

FUNCTIONS

{BPUT X:integer)
Type: EVAL, SPREAD.
The last 8 bits of the integer X are stored at the
location in the global function pointer BPTR and the value
of BPTR is incremented by 1.

{CPLUS X:integer) :word
Type: EVAL, SPREAD.
Add the 12 bit sign extended value of X to the current
value in.the global function pointer BPTR and return this
16 bit value which must not be placed anywhere but in
binary program space. CPLUS is used to create absolute
jump addresses within a function.

JLEFT X:integer):integer
Type: EVAL, SPREAD.
Return the leftmost 8 bits of X as a positive integer 0 to
255,

: tion-poi
Type: EVAL, SPREAD.
Create a new function pointer to return as the value of
MKCODE. The current value of the global variable BPTR is
stored in the real address table at the position pointed
to by the new function pointer. This function is used to
enter a compiled function into the real address table. It

should be called before any code is deposited with BPUT or
WPUT.

{MKGLOB X:dotted-pair):list
Type: EVAL, SPREAD.
X is the dotted-pair (GLOBAL . xxx). Create a 1list of
two integers in the range # to 255 which are the two bytes
of the address of xxx in reverse order.

{MKREF X:any):list

Type: EVAL, SPREAD.

This function is the same as MKGLOB except that X can be
any object. If X is a dotted-pair (or list), it is ‘added
to the global variable MLIST so that it will not be
removed by the garbage collector. MLIST is not accessible
from LISP. MKREF is used by the compiler to generate the
addresses of quoted items.

{RIGHT X:any):integer
Type: EVAL, SPREAD.
Return the rightmost 8 bits of X as an unsigned positive
integer in the range 8 to 255.

FUNCTIONS

{WPUT X:any)
Type: EVAL, SPREAL '
Same as BPUT except that the two bytes of X are placed in
reverse storage order.

2.3 ELEMENTARY PREDICATES

These functions return T when the condition defined is met and
NIL when it is not.

{ATOM U: :
Type: EVAL, SPREAD.
Returns T if U is not a dotted-pair.

{CODEP U:any) :boolean
Type: EVAL, SPREAD.
Returns T if U is a function pointer.

{CONSTANTP U:any) :boolean
Type: EVAL, SPREAD.
Returns T if U is a constant (a number, string, or
function pointer).

{EQ U:any V:any) :boolean
Type: EVAL, SPREAD,
Returns T if U points to the same object as V. Unlike
Standard LISP, fixed integers (not BIGNUM's) are EQ if
they have the same value. Strings with the same
characters are always EQ.

{EON U:any V:any) :boolean
Type: EVAL, SPREAD.
Returns T if U and V are EQ. In UOLISP, EQ and EQN are
the same.

{EQUAL U:any V:any) :boolean
Type: EVAL, SPREAD.
Returns T if U and V are the same. Dotted-pairs are
compared recursively to the bottom levels of their trees.
All atoms must be EQ (EQN is the same as EQ).

FUNCTIONS

{FIXP U: :
Type: EVAL, SPREAD. .
Returns T if U is an integer (a fixed number).

{IDP U:any) :boolean
Type: EVAL, SPREAD.
Returns T if U is an identifier.

Type: EVAL, SPREAD.
Returns T if U is a number and less than 8. If U is not a
number or is a positive number, NIL is returned.

{NULL U:any) :boolean
Type: EVAL, SPREAD.
Returns T if U is NIL.

{NUMBERP U:any) :boolean
Type: EVAL, SPREAD.

Returns T if U is a number. NUMBERP is the same as FIXP.

{ONEP U: :
Type: EVAL, SPREAD.
Returns T if U is a number and EQN to 1. Returns NIL
otherwise.

{PAIRP U; :
Type: EVAL, SPREAD.
Returns T if U is a dotted-pair, else returns NIL.

U:any):boolean
Type: EVAL, SPREAD.
Returns T if U is a string pointer otherwise returns NIL.

{ZEROP U:any):boolean
Type: EVAL, SPREAD.
Returns T if U is a number and has the value @, returns
NIL otherwise.

Since floating point numbers are not implemented, FLOATP
is the only Standard LISP function not defined. VECTORP is
defined when the vector package is loaded.

FUNCTIONS

2.4 FUNCTIONS ON DOTTED-PAIRS

The following are elementary functions on dotted-pairs. All
functions in this section which require dotted-pairs as
parameters detect a type mismatch error if the actual parameter
is not a dotted-pair. This message looks like:

*xx*k* (xxx> is not a pair for <function>

where <xxx> is the invalid value, and <function> is the name of
the function detecting the error.

{CAR U:dotted-pair) :any
Type: EVAL, SPREAD.
(CAR (CONS a b)) ==> a. The left part of U is returned.
The type mismatch error occurs if the actual parameter is
not a dotted-pair.

(CDR (CONS a b)) ==> b. The right part of U is returned.
The type mismatch error occurs if U is not a dotted-pair.

Unlike Standard LISP, the composites of CAR and CDR are
.supported only to three levels.

CAAAR CAAR CAR
CAADR CADR CDR
CADAR CDAR

CADDR CDDR

CDAAR

CDADR

CDDAR

CDDDR

{CONS U:any V:any) :dotted-pair
Type: EVAL, SPREAD.
Returns a dotted-pair which is not EQ to anything except
itself and has U has its left (CAR) part and V as its
right (CDR) part. If there no remaining free dotted-pairs
the garbage collector is called automatically. If there
are still no remaining pairs, the system halts with the

*k*xk** Free Cells Exhausted
{LIST [U:any]l):list

Type: NOEVAL, NOSPREAD.
A list of the evaluation of each element of U is returned.

FUNCTIONS

{RPLACA U:dotted-pair V:any):dotted-pair
Type: EVAL, SPREAD.
The CAR portion of the dotted-pair U is replaced by V. 1If
the dotted-pair U is (a . b) then (V. b) is returned.
The type mismatch error occurs if U is not a dotted-pair.

Type: EVAL, SPREAD.

The CDR portion of the dotted-pair U is replaced by V. If
dotted-pair U is (a . b) then (a . V) is returned. The
type mismatch error occurs if U is not a dotted-pair.

2.5 IDENTIFIERS

All identifiers and GENSYM's are interned.

(GENSYM) :id
Creates an identifier which is the characters Gxxxx where
xxxx 1is a hexadecimal number which is incremented each
time GENSYM is called. The symbol generated is not
guaranteed to be unique.

The following Standard LISP functions are not implemented in
UOLISP.

COMPRESS EXPLODE INTERN REMOB

2.6 PROPERTY LIST FUNCTIONS

A "property list" is a collection of items which are associated
with an identifier for fast access. These entities are called
"flags" if their use gives the identifier a single valued
property and ‘"properties" if the id is to have a multivalued
attribute: an indicator with a property. In UOLISP,
indicator-value pairs are dotted-pairs, and flags are atoms.

FUNCTIONS

Flags and indicators may clash, consequently . care should
be taken to avoid occurrences of indicators which have the same
name as a flag. Likewise, the implementation of functions and
global variables requires that the indicators and flags EXPR,
GLOBAL, and FEXPR not be used.

{FLAG U:id-list V:id) :NIL
Type: EVAL, SPREAD.
U is a list of ids which are flagged with V. The effect
of FLAG is that FLAGP will have the value T for the ids of
U. Both V and all members of U must be identifiers. No
type checking is performed.

{EFLAGP U:id V:id) :boolean
Type: EVAL, SPREAD.
Returns T if U has been previously flagged with V, else
NIL.

{REMFLAG U:any-list V:id) :NIL
Type: EVAL, SPREAD.
Removes the flag V from the property list of each member
of the 1list U. Both V and all elements of U must be
identifiers.

{GET U:id IND:id) :any
Type: EVAL, SPREAD,
Returns the property associated with the indicator IND
from the property 1list of U. If U does not have the
indicator IND, NIL is returned.

{PUT U:id IND:id PROP:any):any
Type: EVAL, SPREAD.
The indicator IND with the property PROP is placed on the
property list of the identifier U.

{REMPROP U:id IND;id) :NIL
Type: EVAL, SPREAD.
Removes the property with indicator IND from the property
list of U. Unlike Standard LISP, NIL is always returned.

2-1r

FUNCTIONS

2.7 FUNCTION DEFINITION

Functions are global entities which are stored on the property
list of the (EXPR . xxx) or (FEXPR . xxx) pair. To maintain
compatibility with other systems, functions should not be
defined with the PUT function.

(DE FNAME:id PARAMS:id-list FN:any):id

Type: NOEVAL, NOSPREAD.

DE defines an EXPR type function named FNAME with the body
FN and formal parameter 1list PARAMS. Any previous
definitions of the function are lost. The function
created is a LAMBDA expression unless the !*COMP variable
is T in which case the EXPR is compiled. The name of the
defined function is returned.

JDF ENAME:id PARAM:id-list FN:any):id

Type: NOEVAL, NOSPREAD.

DF defines an FEXPR type function named FNAME with the
body FN and a single parameter in the list PARAM. Any
previous definitions of the function are lost. The
function created is a LAMBDA expression unless the !*COMP
variable is T in which case the FEXPR is compiled. The
name of the defined function is returned.

{GETD FNAME:any) : {NIL.dotted-pair}
Type: EVAL, SPREAD.
If FNAME is not the name of a defined function NIL is
returned. If FNAME 1is a defined function then the
dotted-pair:

(TYPE:ftype . DEF:{function-pointer,lambda})

is returned.

{PUTD FNAME:id TYPE:ftype BODY:function):id

Type: EVAL, SPREAD.

Creates a function with name FNAME and definition BODY of
type TYPE. If PUTD succeeds the name of the defined
function is returned. The effect of PUTD is that GETD
will return a dotted-pair with the functions type and
definition. Unlike Standard LISP, UOLISP does not have
GLOBALP returning T for functions.

If the function FNAME has already been defined, a
warning message will appear:

(FNAME redefined)

FUNCTIONS

The function defined by PUTD will be compiled before
definition if the !*COMP variable is non-NIL.

{REMD ENAME:id) :NIL
Type: EVAL, SPREAD.
Removes the function named FNAME from the set of defined
functions. Unlike Standard LISP, NIL is always returned
by the REMD function.

UOLISP does not support the MACRO function type. Consequently
the DM function is not supported.

2.8 VARIABLES AND BINDINGS

A variable is a place holder for a value which is said to be
bound to the variable. The scope of a variable is the range
over which the variable has a defined value. UOLISP supports
three binding mechanisms.

Local
This type of binding occurs only in compiled functions.
Local variables occur as formal parameters in lambda
expressions and as PROG form variables. The binding occurs
when a lambda expression is evaluated or when a PROG form is
executed. The scope of a local variable is the body of the
function in which it is defined.

GLOBAL
Only one binding of a global variable exists at any time
allowing direct access to the value bound to the variable.
The scope of a global variable 1is universal. Variables
declared GLOBAL must not appear as parameters in lambda
expressions or as PROG form variables. A variable must be
declared GLOBAL prior to its use as a global variable.

ALIST
UOLISP does not support compiled FLUID variables as does
Standard LISP. However all interpreted functions bind local
variables on an association 1list permitting £fluid style
access for interpreted functions only.

Retrieval of values of variables occurs when they are
evaluated. The following functions declare the global property
and implement the assignment operation.

2-12

FUNCTIONS

{GLOBAL IDLIST:id-list) :NIL
Type: EVAL, SPREAD.
The identifiers of IDLIST are declared global type
variables. If an identifier has not been declared
previously it is initialized to NIL. Identifiers already
declared GLOBAL are ignored.

{GLOBALP U:any) :boolean
Type: EVAL, SPREAD.
If U has been declared GLOBAL T is returned, else NIL is
returned.

(SET EXP:id VALUE:any) :any
Type: EVAL, SPREAD.
EXP must be an identifier or an error occurs. The effect
of SET is replacement of the item bound to the identifier
by VALUE. If the identifier is not a 1local variable or
has not been declared GLOBAL an error occurs. The other
Standard LISP error checking is not performed.

{SETO VARIABLE:id VALUE:any) :any
Type: NOEVAL, NOSPREAD.
SETQ has the same effect as SET except that the first
argument is a variable and is not evaluated. The same
errors occur,

The following Standard LISP functions are not implemented:

FLUID FLUIDP UNFLUID

2.9 PROGRAM FEATURE FUNCTIONS

These functions provide for explicit control sequencing, and
the definition of blocks altering the scope of local variables.

(GO LAREL:id)
Type: NOEVAL, NOSPREAD.
GO alters the normal flow of control within a PROG
function. The next statement of a PROG function to be
evaluated is immediately preceded by LABEL. A GO may only
appear in the following situations:

1) At the top level of a PROG referencing a 1label which
also appears at the top level of the same PROG

FUNCTIONS

2a) As the consequent of a COND item of a COND appearing
on the top level of a PROG

2b) As the consequent of a COND item which appears as the
consequent of a COND item to any level

3a) As the last statement of a PROGN which appears at the
top level of a PROG or in a PROGN appearing in the
consequent of a COND to any 1level subject to the
restrictions of 2a,b

3b) As the last statement of a PROGN within a PROGN or as
the consequent of a COND in a PROGN to any level
subject to the restrictions of 2a,b and 3a

If LABEL does not appear at the top level of the PROG in
which the GO appears, an error occurs:

***** LABEL is not a known label

{PROG VARS:id-list [PROGRAM:{id.any}l):any

Type: NOEVAL, NOSPREAD.

VARS is a list of ids which are considered fluid when the
PROG 1is interpreted and 1local when compiled (see the
"variables and Bindings" section). The PROGs variables
are allocated space when the PROG form is invoked and are
deallocated when the PROG is exited. PROG variables are
initialized to NIL. The PROGRAM is a set of expressions
to be evaluated in order of their appearance in the PROG
function. Identifiers appearing in the top level of the
PROGRAM are labels which can be referenced by GO. The
value returned by the PROG function is determined by a
RETURN function or NIL if the PROG "falls through".

{PROGN [U:anyl) :any
Type: NOEVAL, NOSPREAD.
U is a set of expressions which are executed sequentially.
The value returned is the value of the last expression.

{PROG2 A:any B:any):any
Type: EVAL, SPREAD.
The two arguments are evaluated in order, and the value of
the second is returned.

{RETURN U:any)
Type: EVAL, SPREAD.
Within a PROG, RETURN terminates the evaluation of a PROG
and returns U as the value of the PROG. The restrictions
on the placement of RETURN are exactly those of GO.

FUNCTIONS

2.10

{ERROR

ERROR HANDLING

NUMBER: integer MESSAGE:any)

Type: EVAL, SPREAD.

NUMBER and MESSAGE are passed back to a surrounding
ERRORSET (the UOLISP reader has an ERRORSET). MESSAGE is
placed in the global variable EMSG!*, The error number
becomes the value of the surrounding ERRORSET as well as
being placed in the global variable ENUM!*, Local
variable bindings are unbound to return to the environment
of the ERRORSET. Global variables are not affected by the
process.

{ERRORSET U:any MSGP:boolean TR:boolean):any

2.11

{AND

Type: EVAL, SPREAD.

If an error occurs during the evaluation of U, the value
of NUMBER from the ERROR call is returned as the value of
ERRORSET. In addition, if the value of MSGP is non-NIL,
the MESSAGE from the ERROR call 1is displayed on the
currently selected output device. The message appears
prefixed with 5 asterisks. The MESSAGE from the ERROR
call will be available in the global variable EMSG!*, the
number in ENUM!*,

If no error occurs during the evaluation of U, the
value of (LIST (EVAL U)) is returned.

BOOLEAN FUNCTIONS AND CONDITIONALS

[Usanyl) :extra-boolean
Type: NOEVAL, NOSPREAD.

AND evaluates each U until a value of NIL is found or the
end of the list is encountered. If a non-NIL value is the
last value it is returned, else NIL is returned.

(DF AND (D)
(PROG ()
(COND ((NULL U) (RETURN T)))
LOOP (COND ((NULL (CDR U)) (RETURN (EVAL (CAR U))))
((NULL (EVAL (CAR U))) (RETURN NIL)))
(SETQ U (CDR U))
(GO LOOP)))

FUNCTIONS

{COND lU:cond-forml) iany

Type: NOEVAL, NOSPREAD.

The antecedents of all U's are evaluated in order of their
appearance until a non-NIL value 1is encountered. The
consequent of the selected U is evaluated and becomes the
value of the COND. The consequent may also contain the
special functions GO and RETURN subject to the restraints
given for these functions in the "Program Feature
Functions" section. In these cases COND does not have a
defined value, but rather an effect. If no antecedent is
non-NIL the value of COND is NIL.

ANOT U:any) :boolean
Type: EVAL, SPREAD.
If U is NIL, return T else return NIL (same as NULL
function).

(DE NOT (U) (EQ U NIL))

Type: NOEVAL, NOSPREAD.

U is any number of expressions which are evaluated 1in
order of their appearance. When one is found to be
non-NIL it is returned as the value of OR. If all are
NIL, NIL is returned.

(DF OR (U)
(PROG (X)
LOOP (COND ((NULL U) (RETURN NIL))
((SETQ X (EVAL (CAR U))) (RETURN X)))
(SETQ U (CDR U))
(GO LOOP)))

2.12 ARITHMETIC FUNCTIONS

All arithmetic functions verify that their argquments are

numeric before performing operations on them. The single error
message:

***%** Non-numeric argument

is used by all numeric functions. All integer values are in
the range -4096 to +4095.

{ABS U:number) :number
Type: EVAL, SPREAD.
Returns the absolute value of its argument.

FUNCTIONS

(DE ABS (U)
(COND ((LESSP U @) (MINUS U))
(T U)))

{ADD]l U:pumber) :pumber
Type: EVAL, SPREAD.
Returns the value of U plus 1l.

(DE ADD1 (U) (PLUS2 U 1))

ADIFFERENCE Uinumber V:inumber):number
Type: EVAL, SPREAD.
The value U - V is returned.

A{DIVIDE U:number V:number):dotted-pair
Type: EVAL, SPREAD.
The dotted-pair (quotient . remainder) is returned. The
quotient part is computed the same as by QUOTIENT and the
remainder the same as by REMAINDER.

(DE DIVIDE (U V)
(CONS (QUOTIENT U V) (REMAINDER U V)))

{EXPT U:integer V:integer):integer
Type: EVAL, SPREAD.
Returns U raised to the V power. Unlike Standard LISP,
negative exponents are not permitted. The function will
create incorrect results when the computed value is
greater than 4695.

{GREATERP U:number V:number):boolean
Type: EVAL, SPREAD.
Returns T if U is strictly greater than V, otherwise
returns NIL.

(LESSP U:number V:pumber) :boolean
Type: EVAL, SPREAD.
Returns T if U is strictly less than V, otherwise returns
NIL.

{MAX [U:integer]) :integer
Type: NOEVAL, NOSPREAD.
Returns the largest of the values in U.

FUNCTIONS

{MAX2 U:pumber V:number) :number
Type: EVAL, SPREAD.
Returns the larger of U and V. If U and V are the
value U is returned.

(DE MAX2 (U V)
(COND ((LESSP U V) V)
(T W))

{MIN [U:integerl) :integer
Type: NOEVAL, NOSPREAD.
Returns the smallest of the values of U.

{MIN2 Us;number V:number) :number
Type: EVAL, SPREAD.
Returns the smaller of its arquments. If U and V are
same value, U is returned.

(DE MIN2 (U V)
(COND ((GREATERP U V) V)
(T U))

{MINUS U:number) :number
Type: EVAL, SPREAD.
Returns -U.

(DE MINUS (U) (DIFFERENCE 9 U))

{PLUS |U:numberl) :number
Type: NOEVAL, NOSPREAD.
Forms the sum of all its arguments.

{PLUS2 U:number V:pumber) :number
Type: EVAL, SPREAD.
Returns the sum of U and V.

{OUOTIENT U:number V:number) :number
Type: EVAL, SPREAD.
The quotient of U divided by V is returned. Division
two positive or two negative integers is conventional.

{REMAINDER U:number V:number) :number
Type: EVAL, SPREAD.

If both U and V are integers the result is the integer
remainder of U divided by V. 1If either number is negative

the remainder is negative., If both are positive or
are negative the remainder is positive.

FUNCTIONS

{SUB1l U:number) :number
Type: EVAL, SPREAD,
Returns the value of U less 1.

(DE SUBl1 (U) (DIFFERENCE U 1))

{TIMES [U:numberl) :number
Type: NOEVAL, NOSPREAD.
Returns the product of all its arguments.

{TIMES2 U:number V:number) :number
Type: EVAL, SPREAD.
Returns the product of U and V.

The following Standard LISP functions are not implemented:

FIX FLOAT

2.13 MAP COMPOSITE FUNCTIONS

{MAP X:list EN:function) :NIL
Type: EVAL, SPREAD.

Applies FN to successive CDR segments of X. NIL
returned.

(DE MAP (X FN)
(PROG ()

LOOP (COND ((NULL X) (RETURN NIL))
(T (PROGN (APPLY FN (LIST X))

(SETQ X (CDR X)))))
(GO LOOP)))

{MAPC X:list EN:function) :NIL
Type. EVAL, SPREAD.

FN is applied to successive CAR segments of llSt X.
is returned.

(DE MAPC (X FN)
(PROG ()
LOOP (COND ((NULL X) (RETURN NIL))
(T (PROGN (APPLY FN (LIST (CAR X)))

(SETQ X (CDR X)))))
(GO LOOP)))

is

NIL

FUNCTIONS

{MAPCAN X:list EN:function) :any
Type: EVAL, SPREAD.
A concatenated 1list of FN applied to successive CAR
elements of X is returned.

(DE MAPCAN (X FN)
(COND ((NULL X) NIL)
(T (NCONC (APPLY FN (LIST (CAR X)))
(MAPCAN (CDR X) FN)))))

{MAPCAR X:list EFN:function) :any
Type: EVAL, SPREAD.
Returned is a constructed list of FN applied to each CAR
of list X.

(DE MAPCAR (X FN)
(COND ((NULL X) NIL)
(T (CONS (APPLY FN (LIST (CAR X)))
(MAPCAR (CDR X) FN)))))

{MAPCON X:list FN:function) :any
Type: EVAL, SPREAD.
Returned is a concatenated 1list of FN applied to
successive CDR segments of X.

(DE MAPCON (X FN)
(COND ((NULL X) NIL)
(T (NCONC (APPLY FN (LIST X))
(MAPCON (CDR X) FN)))))

{MAPLIST X:list FN:function):any
Type: EVAL, SPREAD.
Returns a constructed list of FN applied to successive CDR
segments of X.

(DE MAPLIST (X FN)
(COND ((NULL X) NIL)
(T (CONS (APPLY FN (LIST X))
(MAPLIST (CDR X) FN)))))

FUNCTIONS

2.14 COMPOSITE FUNCTIONS

{APPEND U:list V:list):
Type: EVAL, SPREAD.
Returns a constructed list in which the last element of U

is followed by the first element of V. The list U is
copied, V is not.

(DE APPEND (U V)
(COND ((NULL U) V)
(T (CONS (CAR U) (APPEND (CDR U) V)))))

{ASSOC U:any V:ali : =
Type: EVAL, SPREAD.
If U occurs as the CAR portion of an element of the alist
V, the dotted-pair in which U occurred is returned, else
NIL is returned. ASSOC does not detect a poorly formed

alist so an invalid construction may be detected by CAR or
CDR.

(DE ASSOC (U V)
(COND ((NULL V) NIL)
((ATOM (CAR V))

(ERROR # (LIST V "poorly formed ALIST")))
((EQUAL U (CAAR V)) (CAR V))

(T (ASSOC U (CDR V)))))

(ATSOC U:any V:alist):{dotted-pair, NIL}
Type: EVAL, SPREAD.
ATSOC is the same as ASSOC except that the EQN test is
used for comparison purposes rather than EQUAL. ATSOC is
faster than ASSOC when the items being checked for are

identifiers or numbers. ATSOC does not check for a poorly
formed alist.

(DE ATSOC (U V)
(COND ((NULL V) NIL)
((EQN U (CAAR V)) (CAR V))
(T (ATSOC U (CDR V)))))

{DEFLIST U:dlist IND:id):list

Type: EVAL, SPREAD.

A "dlist" is a list in which each element is a two element
list: (ID:id PROP:any). Each ID in U has the indicator
IND with property PROP placed on its property list by the
PUT function. The value of DEFLIST is a list of the first
elements of each two element 1list. Like PUT, DEFLIST
should not be used to define functions.

FUNCTIONS

(DE DEFLIST (U IND)
(COND ((NULL U) NIL)
(T (CONS
(PROGN (PUT (CAAR U) IND (CADAR U))
(CAAR U))
(DEFLIST (CDR U) IND)))))

ADELETE U:any V:li :
Type: EVAL, SPREAD.
Returns V with the first top level occurrence of U removed
from it.

(DE DELETE (U V)
(COND ((NULL U) NIL)
((EQUAL (CAR V) U) (CDR V))
(T (CONS (CAR V) (DELETE U (CDR V))))))

{LENGTH X:any):integer
Type: EVAL, SPREAD.
The top level length of the list X is returned.

(DE LENGTH (U)
(COND ((ATOM U) 0)
(T (ADD1 (LENGTH (CDR X)))))).

(MEMBER A:any B:list):extra-boolean
Type: EVAL, SPREAD.
Returns NIL if A is not a member of list B, returns the

remainder of B whose first element is A.

(DE MEMBER (A B)
(COND ((NULL B) NIL)
((EQUAL A (CAR B)) B)
(T (MEMBER A (CDR B)))))

{MEMO A:any B:list):extra-boolean
Type: EVAL, SPREAD.
Same as MEMBER but an EQ check is used for comparison.

(DE MEMQ (A B)
(COND ((NULL B) NIL)
((EQ A (CAR B)) B)
(T (MEMQ A (CDR B)))))

ANCONC U:list V:list):list
Type: EVAL, SPREAD.
Concatenates V to U without copying U. The last CDR of U

is modified to point to V,

FUNCTIONS

(DE NCONC (U V)
(PROG (W) |

(COND ((NULL U) (RETURN V)))
(SETQ W U)

LOOP (COND ((CDR W) (PROGN (SETQ W (CDR W))

(GO LOOP))))

(RPLACD W V)
(RETURN U)))

SPAIR U:list V:list):alist
Type: EVAL, SPREAD.
U and V are lists which must have an identical number of
elements. If not, an error occurs. Returned is a list
where each element is a dotted-pair, the CAR of the pair
being from U, and the CDR the corresponding element from

V.

(DE PAIR (U V)
(COND ((AND U V)
(CONS (CONS (CAR U) (CAR V))
(PAIR (CDR U) (CDR V))))
((OR U V)
(ERROR @
"Different length lists in PAIR"))
(T NIL)))

{REVERSE U:list):list
Type: EVAL, SPREAD.
Returns the top level reversal of the list U (the reversal
does not go to all levels). The reversed list is a copy
of the actual parameter.

(DE REVERSE (U)
(PROG (W) :
LOOP (COND (U (PROGN (SETQ W (CONS (CAR U) W))
(SETQ U (CDR U))
(GO LOOP))))
(RETURN W)))

Xs;alist Y:any) :any
Type: EVAL, SPREAD.
The value returned is the result of substituting the CDR
of each element of the alist X for every occurrence of the
CAR part of that element in Y.

FUNCTIONS

(DE SUBLIS (X Y)
(COND ((NULL X) Y)
(T (PROG (U)
(SETQ U (ASSOC Y X))
(RETURN (COND
(U (CDR U))
((ATOM Y) Y)
(T (CONS
(SUBLIS X (CAR Y))
(SUBLIS X (CDR Y)))))

))))

{SUBST U:any V:any W:any):any
Type: EVAL, SPREAD.
The value returned is the result of substituting U for all

occurrences of V in W.

(DE SUBST (U V W)
(COND ((NULL W) NIL)
((EQUAL V W) U)
((ATOM W) W)
(T (CONS (SUBST U V (CAR W))
(SUBST U V (CDR W))))))

The following Standard LISP functions are not implemented:

DIGIT LITER SASSOC

2.15 THE INTERPRETER

{APPLY FN:{function-pointer,lambda}l ARGS:any-list):any
Type: EVAL, SPREAD.
APPLY returns the value of FN with actual parameters ARGS.
The actual parameters in ARGS are already in the form
required for binding to the formal parameters of FN. FN
can be either a function-pointer, or a lambda expression.

{EVAL U:any) :any
Type: EVAL, SPREAD.
The value of the expression U is computed.

FUNCTIONS

{EVLIS U: = ;any-1i
Type: EVAL, SPREAD. .
EVLIS returns a list of the evaluation of each element of
U.

{FUNCTION H i :
Type: NOEVAL, NOSPREAD.
The function FN is to be passed to another function. If
FN is to have side effects its free variables must be
GLOBAL. FUNCTION is like QUOTE and, unlike Standard LISP,
its argument is pot compiled. The FUNARG mechanism is not
supported.

{OUOTE U:any) :any
Type: NOEVAL, NOSPREAD.
Stops evaluation and returns U unevaluated.

The Standard LISP function EXPAND is not supported. Macros are
not supported at all.

2.16 INPUT AND OUTPUT

The user normally communicates with UOLISP through the standard
console device. UOLISP allows input from one disk file at a
time and output to another. Special devices are supported as
noted in the appropriate installation guides,

{CLOSE FILEHANDLE:number):pumber
Type: EVAL, SPREAD.
Closes the file with the internal name FILEHANDLE writing
any necessary end of file marks and such. The value of
FILEHANDLE is that returned by the corresponding OPEN.
The value returned is the value of FILEHANDLE. If an
error occurs during a file close or the wrong file handle

is given, UOLISP displays an error but processing will
continue.

{OPEN FILE:string HOW:id) :number
Type: EVAL, SPREAD.
Open the file with the system dependent name FILE for
output if HOW 1is EQ to OUTPUT, or input if HOW is EQ to
INPUT. If the file is opened successfully, a value which
is internally associated with the file is returned. This
value must be saved for use by RDS and WRS.

FUNCTIONS

{LINELENGTH LEN:{ipteger., NIL!}):integer

Type: EVAL, SPREAD.

If LEN is an integer the maximum line length to be printed
before the print functions initiate an automatic TERPRI is
set to the value LEN., The initial line length is set to
the width of the standard output device. The previous
line length is returned except when LEN is NIL. This
special case returns the current line length and does not
cause it to be reset. An error occurs if the requested
line 1length is 1less than #. The maximum line length is
4095. If the line 1length is set to @0, no automatic
TERPRI's will be done.

Returns the number of characters in the current output
buffer. When the buffer is empty, @ is returned.

{PRINT U:any) :any

Type: EVAL, SPREAD.
Displays U in READ readable format and terminates the
print line. The value of U is returned.

{PRINL U:any) :any

Type: EVAL, SPREAD.

U is displayed in a READ readable form. In identifiers,
special characters are prefixed with the escape character
!, and strings are enclosed in "...". Lists are displayed
in list-notation.

{PRIN2 U:any):any

{RDS

Type: EVAL, SPREAD.

U is displayed upon the currently -selected print device
but output is not READ readable. The value of U is
returned. Items are displayed so that the escape
character does not prefix special characters and strings
are not enclosed in "...". Lists are displayed in
list-notation.

Type: EVAL, SPREAD.

Input from the currently selected input file is suspended
and further input comes from the file named. FILEHANDLE
is a number returned by the OPEN function for this file.

‘I1f FILEHANDLE is NIL the terminal input device is

selected. When end of file is reached on a non-standard
input device, the standard input device is reselected.
RDS returns the internal name of the previously selected
input file.

FUNCTIONS

{READ) :any ‘
Returns the next expression from the file currently
selected for input. Valid input forms are: dot-notation,
list-notation, numbers, strings, and identifiers with
escape characters. READ ignores comments. A comment
starts with a percent sign (%) and is terminated by the
end of line.

:id .
Returns the next character from the file currently
selected for input. Two special cases occur. If all the
characters in an input record have been read, the value of
ISEOL!$ 1is returned. Comments delimited by % and end of
line are not transparent to READCH.

The current print line is terminated.

{WRS EILEHANDLE:number) :number

Type: EVAL, SPREAD.

Output to the currently active output file 1is suspended
and further output is directed to the file named.
FILEHANDLE is an internal name which is returned by OPEN.
The file named must have been opened for output, unless it
is a device that is always open (like the console). If
FILEHANDLE is NIL the standard output device is selected.
WRS returns the internal name of the previously selected
output file. '

The following Standard LISP functions are not implemented:

EJECT LPOSN PAGELENGTH PRINC

2,17 SYSTEM GLOBAL VARIABLES

These variables provide global control of the LISP system, or
implement values which are constant throughout execution.

1*COMP - Initial value = NIL.

The value of !*COMP controls whether or not PUTD compiles the
function defined in its arguments before defining it. 1If
I*COMP is NIL the function is defined as a LAMBDA expression.
If I*COMP is non-NIL, the function is first compiled.

FUNCTIONS

J*ECHO - Initial value = NIL.
If *ECHO is T, input character will be written to the selected
output file as they are read.

EMSG!* - Initial value = NIL.
Will contain the MESSAGE generated by the last ERROR call (see

the "Error Handling" section).

ENUM!* - Initial value = NIL.
Contains the error number from the last ERROR call.

1SEQL!S - Value = an uninterned identifier.
The value of !S$EOL!$ is returned by READCH when it reaches the
end of a logical input record.

J*FLINK - Initial value = NIL.

If !*FLINK is non-NIL, fast call instructions are generated in
place, of slow indirect calls in compiled code. Once a fast
call has been generated it may not be changed back to a slow
call. The timing ratio of slow to fast links is approximately
50 to 1.

1*GC - Initial value = NIL.

I*GC controls the printing of garbage collector messages. If
NIL no indication of garbage collection will occur. If
non-NIL, the number of free cells remaining after each
collection will be displayed on the selected output file.

NIL - Value = NIL.
NIL is a special global variable.

T - Value = T.
T is a special global variable.

1*QUTPUT - Value = T.
If !*OUTPUT is T then the result of each LISP reader evaluation
is printed otherwise no value is printed.

J*RAISE - Value = NIL.

If I*RAISE is T then lower case characters are converted to
upper case during input. If NIL, no conversion takes place.
On machines which do not normally support lower case, this flag
is not implemented.

FUNCTIONS

UOLISP does not implement the Standardard LISP I $EOF!S
variable.

2.18 STANDARD LISP DIFFERENCES

Functions supported by UOLISP but are not in the Standard LISP
report are listed in the first two sections of this chapter.
The following Standard LISP functions are not currently
supported for a variety of reasons:

COMPRESS FLOATP PRINC
CxxxxR FLOAT REMOB
DIGIT FLUIDP SASSOC
DM FLUID UNFLUID
EJECT INTERN

EXPAND LITER

EXPLODE LPOSN

FIX PAGELENGTH

The vector functions GETV, MKVECT, PUTV, UPBV, and VECTORP
are implemented as a package which is interfaced to the RLISP
high level language.

2.19 ERRORS

Many error conditions are signaled by a system call to the
ERROR function. The following errors and their corresponding
numbers are detected in this manner.

1. Caused by a user typing the program interruption key
(implementation specific).

2. Undefined function call from compiled code.
3. Not used.

4. The argument of CAR, CDR, RPLACA, RPLACD and so on is
not a dotted-pair.

5. An arithmetic function was called with a non-numeric
argument. '

6. An input or output file could not be opened. This

will wusually be prefixed by some operating system
error message,

FUNCTIONS

7. A poorly formed association 1list was detected by
ASSsOC.

8. Not used.
9. Not used.

10. An input or output error was detected from which the
operating system could not recover. This will usually
be preceeded by an operating system error message.

11. An unbound variable was detected during the evaluation
of a function or functional form.

12. The object of a GO could not be found within the
current PROG.

2.20 SYSTEM ERRORS

The system tries to maintain an operating environment. Some
severe errors cause complete termination and program restart
with global data intact but with stacks gone and so on. These
errors appear with 7 astersisks preceeding them and are
followed by the LITTLE BIG LISP prologue heading.

**kk*x*x STACK OVFLW
This occurs when the frame stack gets to close to the push
down stack. This wusually means that recursion has
preceeded to deeply or infinitely.

**%%*x+* SYMBOL TABLE FULL
This error occurs when too many symbols have been added to
the symbol table. This is usually the result of to many
GENSYM's being done or too large a program being read in.

% STRING SPACE FULL
This error occurs when the string table overflows into the
symbol table. This could be too many GENSYM's or too many
large string messages.

***kx** FREE CELLS EXHAUSTED
This error occurs when all available free dotted-pairs

have been used. To determine how many available free
pairs there are do:

(SETQ !*GC T)
(RECLAIM)

CHAPTER 3

FAST LOAD

Rather than compiling an entire system or reading and compiling
code every time, program modules are compiled into relocatable
fast Jload files. Most modern LISP systems provide this
facility in one form or another. The fast loading program is
built into the system. It reads binary code and top level
S-expressions to interpret. To load a precompiled package
enter:

(FLOAD "filename")
where "filename" is a disk file name. If all goes well the
system will respond with NIL. If you try to load the wrong
type of file, the error message:

%x%%* FAST LOAD ERROR
will appear.

To create a fast load file you must enter the following
sequence:

(FLOAD "COMP") $Load the compiler
(FSLOUT "filename") ¢Create a file
.o $LISP source code here.
Fsﬂéﬁn $End of source code.
The file "filename" will appear in the directory. All

S-expressions read between the FSLOUT and the FSLEND are
directed to "filename" with the exception of DE, DF, and PUTDs
which are evaluated and cause compiled functions to be dumped
to the file.

If a function must be evaluated during the fast 1load
generation process it should be tagged with the EVAL flag by
the FLAG function. The system has already flagged the RDS, IN,
ON, and OFF functions as EVAL type. Some functions must be
both dumped and evaluated. These are tagged with the EVALS
flag by FLAG. GLOBAL is the only one one these flagged by the

FAST LOAD

system.

In RLISP the same sequence 1is accomplished except that
RLISP syntax is used in place of S-expressions.

Fast load files are both relocatable and implementation
independent. This means. that they may be loaded into at any
storage location. To some degree files are also machine
independent.

CHAPTER 4

THE COMPILER AND OPTIMIZER

The compilation process is divided into two passes: the first
translates LISP into pseudo-assembly code called LAP (for Lisp
Assembly Program), the second translates this LAP into absolute
machine code and places this in storage for execution or dumps
it to a fast load file for later reloading. An optional third
pass optimizes the LAP before assembling it.

4.1 OVERVIEW

The LISP interpreter contains code for reading functions into
the LISP system and executing them interpretively much like
other microprocessor based systems. Unfortunately interpreted
functions require large amounts of storage and execute very
slowly.

A more efficient scheme reads functions in the
interpretive form, and then compiles them to machine code to be
executed directly by the microprocessor. The interpreted
version of the function disappears, 1its storage becomes
available for use at a later time.

For example, the function FACT which computes the
factorial of a number recursively is defined in UOLISP as
follows:

(DE FACT (N)
(COND ((LESSP N 2) 1)
(T (TIMES2 (FACT (SUB1 N)) N))))

In UOLISP, dotted-pairs, of which this function is composed,
take 4 bytes each. 22 dotted-pairs are used to define FACT for
a total of 88 bytes. UOLISP's compiler and optimizer generates
the following code for FACT:

THE COMPILER AND OPTIMIZER

g000 ENTRY FACT EXPR
#000 CD1294 CALL ALLOC
9003 02 DEFB 2

p004 E7FE STOX HL -1
2086 110240 LDI DE 2
80089 F7 RST LINK
PO0A 1620 DEFW LESSP
PB88C EF RST CMPNIL
pgOD 2885 JREQ $1
POOF 210140 LDI HL 1
pe12 1813 JR $0
P014 $l:

p@l4 DFBF LDX HL -1
pA16 F7 RST LINK
017 8120 DEFW SUB1
pB19 F7 RST LINK
PB1A A920 DEFW FACT
#01C DF7F LDX DE -1
@4d1E F7 RST LINK
@g81F 1921 DEFW TIMES2
p021 $0:

P821 CD8494 CALL RDLLOC
8024 FE DEFB -2
(FACT used 37 bytes)

FACT

A total of 37 bytes, less than half the size of the interpreted
version. The execution of the compiled version uses no
dotted-pairs and runs nearly 20 times faster.

4.2 COMPILATION MECHANISMS

Much support software is needed for compiled programs.
Compiled programs simply move information between registers and
call subroutines to perform most operations. In this section
we describe how various LISP constructs are implemented in LAP
and enumerate the various support functions required.

4,2.1 Parameter Passing

Zero to 3 parameters may be passed to a function. The first
argument of a function (if it has any) will always be in the HL
register pair, the second in DE, and the third in BC.
Functions with more than three arguments cannot be compiled.

THE COMPILER AND OPTIMIZER

4.2.2 Stacks

Function parameters and PROG type variables are kept in a stack
frame, a contiguous block of locations pointed to by the IX
index register. When a function is invoked it creates a new
frame on the top of the stack by calling the ALLOC support
subroutine. ALLOC adds a number to IX to create a new empty
stack frame. It also checks for stack overflow and signals an
error if this has happened or is about to happen. When a
function terminates it calls the DALLOC routine which subtracts
the number of locations used from IX freeing the space for use
by the next function. The routine RDLLOC is called from
optimized code. It performs the same functions as DALLOC and
in addition does a double return to the function which called
the function which called RDLLOC. This saves one byte at the
end of most functions.

Storing and retrieving values from the stack frame is
accomplished by the two support routines LDX and STOX. Since
these operations occur frequently in compiled code it |is
necessary that they use as 1little storage as possible.
Therefore the LDX and STOX routines should be called .using the
280 RST instruction with the following byte containing what
register pair is to be stored (or loaded), and the displacement
from the top of the stack frame. The format of the control
byte is given in the source code listings of LDX and STOX. The
LAP instructions generated by the compiler are also called LDX
and STOX and contain the register pair name and what
displacement is to be used.

Since these functions slow down the object code
considerably, the optimizer can replace them with their 6 byte
indexed move equivalents. This will speed up many functions
over 30%.

Let us examine a LAMBDA function with an imbedded PROG and
look at the code generated by the compiler.

(LAMBDA (A B) (PROG (C D) ve0) we.)

The generated LAP code pushes and pops the stack frame and
stores registers into the frame.

THE COMPILER AND OPTIMIZER

LISP LAP Stack Frame
(LAMBDA (A B) ...
(CALL ALLOC) fmm————————— +
(DEFB +4) L |<=-- new IX
(STOX HL -1) 4= A -—t
(STOX DE -2) |H |
. o o o e o e o e o o +
. |E |
. e B -
. ID [
. e cmeaec—- +
L] L] L] <-- Old Ix

.. (PROG (C D) ...

(CALL ALLOC) trm——————————— +
(DEFB +4) |L |<-- new IX
(LDI HL NIL) t=- C —-——s
(STOX HL -1) |H |
(STOX HL -2) Lkl bl el +
. IL |
. +== D -
. |H |
fmm—————————— +
. A .<==- 0l1ld IX
. B .

Nested PROGs cause more frames to be allocated up to a maximum
of 64 accessable variables. The limiting factor is the 6 bits
of displacement in the LDX and STOX macros.

The Z80 internal stack (pointed to by the SP register) is
used for saving return addresses and intermediate values during
function evaluation. A call to a function FUN3 with 3
arguments stores the results of evaluation of the first two
arguments on the %280 stack while the third is being computed.
The values are popped into the appropriate registers just
before the function is invoked.

(FUN3 (FUNA ...) (FUNB ...) (FUNC ...))

would generate the following code sequence:

THE COMPILER AND OPTIMIZER

... evaluate FUNA ...

(PUSH HL) ;Save result of FUNA on stack.

.es €evaluate FUNB ...
(PUSH HL) ;Save result of FUNB on stack.

.. €evaluate FUNC ...
(LDHL BC) ;s Move BC to HL.
(POP DE) ;Result of FUNB is second argument.
(POP HL) ;Result of FUNA is first argument.
(RST LINK) ;Call FUN3.

(DEFW FUN3)

4.2.3 Calling Functions

The compiler will not always know the address of a function
being called either because it 1is not yet defined or it is
interpreted. A special internal subroutine called LINK is used
to transfer control at run time. Since both compiled and
interpreted functions can exist at the same time, LINK will
perform either of two functions. If an interpreted function is
being called from compiled code the LISP interpreter will be
invoked for that function. If the function being called is
compiled or is a system function the call to LINK will be
replaced by a direct call to that function. The call to the
LINK function must be an RST type link so that the 3 byte 2Z89
CALL instruction will exactly replace the compiled call. 1If
the system global variable !*FLINK is NIL, the substitution
will not take place and the slow link form will be used. This
is a wuseful debugging tool as it allows you to compile
functions and change their definitions (for tracing) without
reloading the system.

Compiled as: Changed by LINK to:

(RST LINK) (CALL function-address)
(DEFW function-name)

The two byte DEFW attached to the LINK contains the symbol
table pointer of the function being called. At execution time
the LINK routine looks for either a compiled or interpreted
function attached to the name and either invokes EVAL,
generates the CALL, or if the !*FLINK flag is on, just
transfers to the function. If no such function is defined, the
undefined function error will occur.

THE COMPILER AND OPTIMIZER

4.2.4 The LIST Function
The LIST function is compiled in a special way to take
advantage of the 288 internal stack. The arguments of the LIST
function are compiled and the results of each are pushed onto
the stack. When all have been computed the support function
CLIST is called.

(LIST (Fl o.o) LI (Fn o--))
compiles to:

... evaluate Fl ...

(PUSH HL) ;Save result of Fl1 for CLIST.
. ;Evaluate other arguments.
ees €valuate Fn ...
(PUSH HL) :Save result of Fn for CLIST.
(LDA n) ;Number of values on stack for

(CALL CLIST) ;call to CLIST routine.

4.2.5 COND Compilation

The LISP COND function is compiled into a series of tests and
conditional jumps. The CMPNIL support routine compares the
result of a predicate to NIL and sets the 280 NZ and 2 flag
bits which control the conditional branch instructions
generated. If the 1last predicate ©<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>